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Studies of the Observed and Theoretical

Variations of Atmospheric Ozone

Final Report: NSG-5153

This is a final report of our research activities carried out under NASA

Grant NSG-5153. During the thirteen years covered by the report (1 January 1977-

30 June 1990), our grant research dealt with four main related topics:

1. distributions of total and upper atmospheric ozone and their time and space

variations;

2. observed and theoretical models of the QBO ozone variation;

3. radiative processes in the uppcL atmosphere; ,lid

4. relations between ozone and sol_tr variations.

The results of these studies were published in twenty-three papers: twelve

papers covered topic 1, four papers each covered topics 2 and 4, and three papers

covered topic 3. (A complete reference list of publications describing the results of

our research supported by grant funds is given below as Appendix A.) In addition,

twenty-two papers discussing the results of grant research were presented at various

symposia and workshops. Grant funds were used to support, partially or fully, six

graduate-degree students and one postdoctoral rescarcll associate (a list of students

supported by our NASA grant is given in Appendix B). The following information

briefly summarizes the principal rt.:,d,s of our rescmch funded by NSG-5153.

1. Distribution and Variation of Total and Upper Atmospheric Ozone

Total-column ozone has been measured using Dobson-type instruments since

1925, but a quasi-global distribution of observing st_ttions started only with the ad-

vent of the IGY in 1957. Currently, there arc almost 100 stations taking routine

total-ozone observations, principally using Dobson-type instruments, although some

observations are based on optical filter measurements. The global-network obser-

vations are limited to land-based stations. Satellite measurements of total ozone

started at the end of the 1960s and are derivcd from inbtruments on different satel-

lites. They have the distinct and impottant advantage of providing almost contin-

uous near-global distribution. Upper air ozone observations have been made from

ground-based (Umkehr) observations principally since 1957, balloon-borne sounders

and rocket measurements since the early 1960s, and satellite observations since early

1970. Details of the different ozone-measuring techniques were described in a num-

ber of published papers (2, 12, and 17).* The average observed global total-ozone

distribution was also discussed in these papers, and in (6).

*Numbered papers are listed in Appendix A.



The long-term annual averagedistributions of total ozone as determined
from ground-basedand satellite-derived observationsarc in general mutual agree-
ment despite the differencein time mid spacecoverageof the observing systems.
Analysesof the latitude, longitude, and seasonaldistributions derived from the two
systemsof ozonemeasurementsindicated significant similarity in the location and
time variations of the north and south subpolar m_tximaand the equatorial ozone
minimum. This is of particular interest sinceit permits someextrapolation back to
the period when only ground-baseddata were a_ilable. As aa example, we were
able to show that even before the TOMS documentation, it was evident that an
averagetotal-ozone trough existed during September-Octoberat latitudes south of
about 65°S (17). However,a study of the geographicbias in determining average
variations of total ozone from ground-basedobservations (10) indicated that al-
though the absolute bias may be small (,-_1%),the rms differencecould be as large
as2.5%where there are few ground-basedstations (i.e., lat 40-50° S). Analysis of

the trend of total ozone during the decade of the 1960s indicated a tendency for

an increase of the order of 10% per decade in the Northern Hemisphere, but little

significant change in the Southern Hemisphere with no obvious relation to the solar

cycle, nuclear explosions, or volcanic

activity (1, 3). Indeed, an extension of this analysis coveriltg 1958-1980 (17) showed

that the strong total-ozone increase in the Northern tIcmisphere detected earlier did

not persist through the following decade.

Our analysis of the vertical ozone distribution was based on ozonesonde,

Umkehr, and satellite observations. Ozonesonde data are most representative for

ozone concentrations in the troposphere and lower stratosphere, Umkehr obser-

vations are particularly useful in the lower, middle, and upper stratosphere, and

satellite data provide best results in the middle and upper stratosphere and lower

mesosphere. The first two methods have long periods of records, but are severely

limited by skeletal geographic distribution. Continuous satellite observations, on

the other hand, are available for limited periods [i.e., slightly more than 1 year for

OGO-4 (11) up to about 10 years for SBUV observations], but they do provide

information that is generally quasi-global. We have shown that where the obser-

vations from these different techniques overlapped in time and space, the derived

results tend to agree with each other quite well (17).

The global distribution of the ozone concentration in the troposphere, strato-

sphere, and lower mesosphere, including seasonal variations and hemispheric dif-

ferences, was discussed in a number of our publications (2, 11, 12, 15, 17, 20, 21).

Analyses of satellite-derived data were based largely on observations from the OGO-

4, BUV, and SBUV systems. It was shown that in the upper troposphere and lower

stratosphere, seasonal and longitudinal variations arc quite pronounced at middle

and high latitudes with ozone ridges during spring near the eastern continental

coasts. Seasonal and longitudinal variations are relatively small in the subtropics.

The long-term average pressure/latitude ozone mixing ratio for January and July

indicated a maximum mixing ratio of about 16 ppmm near the equator at a level

of 5-6 mb. The center of ozone maximum shifts from just south of the equator in

Janum'y to just north in July. Seasonal variations of the equatorial maxinmm are in



response to seasonal variation of direct solar irradiance as it affects the maximum

production of odd-oxygen species. The axis of ozone maximum tilts upward with

increasing latitude during winter in each hemisphere.

Periodic (annual and semi-annual) variations were also calculated mainly

from the BUV and SBUV observations (15, 21). The annual amplitude was com-

puted to be largest in the subpolar upper stratosphere with a phase of maximum

in winter. The maximum amplitudes at these heights and latitudes were larger

by almost 50% in the Southern Hemisphere, a result of a combination of inverse

temperature-dependent photochemistry and stronger slant-wise upward advection

in the southern subpolar upper stratosphere. Other annual amplitude maxima are

found in the subpolar regions near 10 and 40 mb. Dominant semi-annual variations

were found at the equator at about 3-6 mb and slightly higher at subpolar lati-

tudes. Hemispheric differences of time and longitude variations in the stratosphere

and mesosphere were calculated from eight years of SBUV observations (20). These

differences are evident mostly at the upper (1 rob) and lower (30 mb) levels where,

as mentioned above, temperature-dependent photochemistry and quasi-horizontal

advection (particularly in the lower stratosphere) are most effective. The longi-

tude variations reflect, in large part, differences in the nature and form of the

underlying boundary surface that, in turn, affect hemispheric differences in thermal
structure and circulation characteristics of the stratosphere. Seasonal changes of

the zonal variations (21) indicated that waves 1 and 3 are the most significant and

are strongest during Northern Hemisphere winter at subpolar latitudes. A feature

of the averaged zonal harmonic is the presence of two strong wave I oscillations

at 10 and 40 mb over the tropics. These seem to persist during all seasons, but

are strongest in July over the equator. There is a phase difference of about 180 °

between the lower- and upper-level wave 1. We had earlier pointed out (19) that

at about 20 mb over the equator, the level of minimum amplitude of wave 1, the

effects of vertical advection and temperature-dependent chemistry tend to cancel

each other.

Some insight to the causes of the annual and semi-annual ozone variation

can be provided by comparisons of the observed time, height, and latitude results

with those derived from photochemical models. Where the observed and photo-

chemical model distributions agree, analysis of the relative significance of transport

and different photochemical terms in the model computation can indicate the basic

mechanism responsible for the observed variations. The results of such an analysis

(22) showed that in the low to middle stratosphere at subpolar latitudes, ozone
abundances increase in winter because of transport from equatorial regions of pro-

duction and decrease in summer because of chemical destruction. In the upper

stratosphere, the annual ozone variation chiefly results fiom the annual tempera-

ture variation.
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2. Observed and Theoretical Models of the QBO Ozone Variation

A quasi-biennial oscillation (QBO) of equatorial and subtropical total and

lower and middle stratospheric ozone has been known since the eaxly 1960s and

1970s. We used our previous analyses of monthly global distribution of total ozone

and satellite-derived stratospheric ozone along with tropical stratospheric (50 rob)

wind data to study the relation of the observed latitude-dependent total and strato-

spheric ozone QBO to the tropical stratospheric zonal wind oscillation (9, 14). Sta-

tistical spectra of the ozone variation showed maxilnunl energy at about 28 months.

A cross-spectrum analysis between monthly ozone and tropical stratospheric winds

was performed at 10 ° latitude intervals to determine the coherence and phase lag

between the ozone and wind data. The strongest coherence, at the 95% significance

level, was found just north of the equator and at subpolar regions by using both

ground-based and satellite-derived total-ozone values. The phase lag (west-wind

maximum preceding ozone maximum) was found to be near zero at the equator and

increased to about 60 ° at subpolar latitudes.

Theoretical studies using one- and two-dimensional models (19, 18) of the

tropical and subtropical stratospheric ozone QBO were developed for a coupled ra-

diative/photochemical/dynamic system. The results of these models showed quite

good agreement in the height interval 20-35 km. The models were based on as-

sumed zonal wind profiles to derive vertical wind, temperature, and ozone vari-

ations. In agreement with observations, the derived ozone QBO amplitude has a

major maximum near 22 km and a secondary maximum at about 32 km. The phase

of the 28-month ozone oscillation moves forward at a rate of slightly more than one

month km -1 between 35 and 29 km. It then experiences an abrupt shift of almost

12 months between 29 and 27 km and then advances again at an average rate of

slightly more than one month km -1.

The derived ozone stratospheric QBO amplitude decreases with latitude to

a minimum at about 15 ° and then increases to a secondary maximum over the

subtropics. This result was also in agreement with the satellite-derived values. The

rapid phase increase occurs at a slightly higher level in the model than is observed. A

diagnostic study in the model calculations showed clearly that the lower-layer major

ozone QBO maximum was produced by oscillations of th," vertical wind component.

The upper-level maximum was the result of temperature-, h:pendent photochemistry.

The phase-lag dependence indicates the relative ilnportance of the two different

processes on the time-dependent ozone variation.

3. Radiative Processes in the Upper Atmosphere

The distribution of radiative energy sources and sinks helps to determine the

thermal structure and modes of interaction involving photochemical and dynamic

processes in the atmosphere. The important processes of concern in evaluating

radiative heating and cooling in the Earth's atmosphere were briefly described (5).

Calculations were made of the height/latitude/season distributions of the radiative



energysourcesand sinks for the principal radiatively activegasesin the stratosphere
and mesosphere(7, 8). The results indicated that the composite,globally averaged
net heating or cooling due to radiative processeswasa slight warming (< 1° day -1 )

at about 20 kin, radiative equilibrium at 25-45 kin, and heating in the interval 45-

80 km. The net radiative heating and cooling distribution has, of course, important

latitude and season variations. The maximum heating occurs at high latitudes

during summer at about 50 kin. The maximum cooling was calculated to occur

at high latitudes during winter at about 60 km. Details of the height/latitude

distribution of the different computed heating and cooling rates due to the different

atmospheric constituents are given in (7).

4. Relations Between Ozone _lld Solar Variations

From the onset of NASA grant NSG-5153 the subject of the response of

atmospheric ozone to solar variability has always been a candidate problem for our

investigation. Our main concern was to attempt to find a clear relationship between

total or stratospheric ozone and solar UV variations on time scales longer than the

solar rotation period (27 days). A study of the associatitm between solar variability

and total ozone (4) failed to show any significant statistical relationslfip between

the two. However, in a later study (13) the results of an analysis of the association

between satellite-derived stratospheric ozone and solar proxy data (F10) suggested

that there may very well be a positive response in the tropical stratosphere at

a height of about 45-50 km. Adequate radiative/photochemical/dynamic models
used to simulate the solar-ozone association discussed above require realistic input

of the amplitude and phase of the principal solar UV forcing functions. We have

made use of the Solar Mesosphere Explorer irradiance observations to determine

the amplitudes of the UV irracUance variations for solar-rotation and solar-cycle

periods (16). Wc also noted that there is an amplitude variation of the solar-

rotation oscillation to produce an irradiance period of about 260-280 days. By

comparing the SME UV irradiance values with the ACRIM/ERB solar constant

observations during the decline phase of solar cycle 21, we were able to show that

near-UV variability (200-300 nm) contiibutes about 30_S_-35% of the observed solar-

constant decrease (23).

We axe currently making use of the observed S;klE data as discussed above

to model the ozone response in the stratosphere an,_l mesosphere to solar variability

at periods longer that 27 days. This ongoing study is being funded through the

NASA/UARS program.
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